AFRL-IF-RS-TR-2003-194

Final Technical Report
August 2003

A MODEL-BASED REAL-TIME INTRUSION
DETECTION SYSTEM FOR LARGE SCALE
HETEROGENEOUS NETWORKS

University of California at Santa Barbara

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F252

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2003-194 has been reviewed and is approved for publication.

APPROVED:
s/

LUIGI SPAGNUOLO
Project Engineer

FOR THE DIRECTOR: /s/
WARREN H. DEBANY JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE oM o e ors8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND
AUGUST 2003

DATES COVERED
Final Apr 98 — Dec 02

4. TITLE AND SUBTITLE
A MODEL-BASED REAL-TIME INTRUSION DETECTION SYSTEM FOR
LARGE SCALE HETEROGENEOUS NETWORKS

6. AUTHOR(S)
Richard A. Kemmer and Giovanni Vigna

5. FUNDING NUMBERS

C -F30602-97-1-0207
PE -62301E

PR -F252

TA - 40

Wwu - 21

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Santa Barbara

8. PERFORMING ORGANIZATION
REPORT NUMBER

Department of Computer Science

Santa Barbara California 93106
N/A

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/IFGB
525 Brooks Road
Rome New York 13441-4505

AFRL-IF-RS-TR-2003-194

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Luigi Spagnuolo/SNHS/(781) 377-4249/ Luigi.Spagnuolo@hanscom.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

This final report from the University of California Santa Barbara for their grant entitled “A Model-Based Real-Time
Intrusion Detection System for Large Scale Heterogeneous Networks” describes the approach and accomplishments of
the research effort. The primary objective for this research was to determine the feasibility of using the State Transition
Analysis Technique (STAT) to model and detect Intrusions in large-scale, heterogeneous networks. An additional goal
was to develop an extensible framework that supports the development of new STAT-based intrusion detection systems
to match new domain and environments. Finally, a goal of this project was to provide a communication and control
infrastructure that is able to collect the alerts produced by the sensors, control their configuration, and coordinate their
response.

14. SUBJECT TERMS
Real-Time, Large Scale Networks, Intrusion Detection, State Transition Analysis

15. NUMBER OF PAGES
11

Technique, STAT 16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

18. SECURITY CLASSIFICATION
OF THIS PAGE

19. SECURITY CLASSIFICATION
OF ABSTRACT

20. LIMITATION OF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18

298-102

Table of Contents

I ODJECLIVE ..ttt ettt ettt sttt sa ettt st b et b e ae et st sbe e
2. APPTOACK ...ttt ettt et et et eate e bt e snteeneenn
3. ACCOMPIISAMENLS.couiiiiiiiiieie ettt et e s e

3.1 Papers PUDIIShEdooooiiiiiie et
3.2 Students Graduated

4. Technology Transition

Final Report
DARPA grant F30602-97-1-0207
AO Number: F252
February 27, 2003
A Model-based Real-time Intrusion Detection System
for Large Scale Heterogeneous Networks

Richard A. Kemmerer, PI
Giovanni Vigna, Co-PI

Department of Computer Science
University of California

Santa Barbara, CA 93106
[kemm,vigna]@cs.ucsb.edu

1 Objective

The primary objective for this research was to demonstrate the feasibility of using the State Transition
Analysis Technique (STAT) to model and detect intrusions in large-scale, heterogeneous networks. An
additional goal was to develop an extensible framework that supports the development of new STAT-based
intrusion detection systems to match new domain and environments. Finally, a goal of this project was to
provide a communication and control infrastructure that is able to collect the alerts produced by the sensors,
control their configuration, and coordinate their responses.

2 Approach

Intrusion detection systems (IDSs) analyze information about the activities performed in a computer system
or network, looking for evidence of malicious behavior. Attacks against a system manifest themselves in
terms of events. These events can be of a different nature and level of granularity. For example, they may
be represented by network packets, operating system calls, audit records produced by the operating system
auditing facilities, or log messages produced by applications. The goal of intrusion detection systems is to
analyze one or more event streams and identify manifestations of attacks.

The intrusion detection community has developed a number of different tools that perform intrusion
detection in particular domains (e.g., hosts or networks), in specific environments (e.g., Windows NT or
Solaris), and at different levels of abstraction. These tools suffer from two main limitations: they are
developed ad hoc for certain types of domains and/or environments, and they are difficult to configure,
extend, and control remotely. In the specific case of signature-based intrusion detection systems (e.g., Snort),
the sensors are equipped with a number of signatures that are matched against a stream of incoming events.
Most systems are initialized with a set of signatures at startup time. Updating the signature set requires

stopping the sensor, adding new signatures, and then restarting execution. Some of these tools provide a
way to enable/disable some of the available signatures, but few systems allow for the dynamic inclusion of
new signatures at execution time. In addition, the ad hoc nature of existing tools does not allow one to
dynamically configure a running sensor so that a new event stream can be used as input for the security
analysis.

Another limitation of existing tools is the relatively static configuration of responses. Normally it is
possible to choose only from a specific subset of possible responses. In addition, to our knowledge, none of
the systems allow one to associate a response with intermediate steps of an attack. This is a severe limitation,
especially in the case of distributed attacks carried out over a long time span.

Finally, the configuration of existing tools is mostly performed manually and at a very low level. This
task is particularly error-prone, especially if the intrusion detection sensors are deployed across a very
heterogeneous environment and with very different configurations.

Our approach to the problem is to develop a framework that defines a domain-independent analysis engine
based on a characterization of attacks in terms of states and transitions between states. The framework can
be extended in a well-defined way to match new domains, new event sources, and new responses. Intrusion
detection applications are built by composing independent building blocks. The resulting set of applications
is a software family that shares a common configuration and control framework. This enables the dynamic
configuration of a wide range of characteristics.

The framework is centered around the State Transition Analysis Technique. According to this method-
ology, attack scenarios are represented as a sequence of transitions that characterize the evolution of the
security state of a system. In an attack scenario states represent snapshots of a system’s security-relevant
properties and resources. A description of an attack has an “initial” starting state and at least one “compro-
mised” ending state. States are characterized by means of assertions, which are predicates on some aspects
of the security state of the system. For example, in an attack scenario describing an attempt to violate the
security of an operating system, assertions would state properties such as file ownership, user identification,
or user authorization. Transitions between states are annotated with “signature actions” that represent the
key actions that if omitted from the execution of an attack scenario would prevent the attack from complet-
ing successfully. For example, in an attack scenario describing a network port scanning attempt, a typical
signature action would include the TCP segments used to test the TCP ports of a host. The characterization
of attack scenarios in terms of state and transitions allows for an intuitive graphic representation by means
of state transition diagrams (STDs).

Attacks modeled using the STAT technique are represented using the STATL language. STATL provides
constructs to represent an attack as a composition of states and transitions. Because it is possible for several
occurrences of the same attack to be active at the same time, a STATL attack scenario has operational
semantics in terms of a set of “instances” of the same scenario “prototype”. The scenario prototype represents
the scenario’s definition and global environment, and a scenario instance represents a particular attack that
is currently in progress.

The evolution of the set of instances of a scenario is determined by the type of transitions in the scenario
definition. A transition can be consuming, nonconsuming, or unwinding. A nonconsuming transition is
used to represent a step of an occurring attack that does not prevent further occurrences of attacks from
spawning from the transition’s source state. Therefore, when a nonconsuming transition fires, the source
state remains valid, and the destination state becomes valid too. For example, if an attack has two steps
that are the creation of a symbolic link to a SUID program and the execution of the program through
the created link, then the second step does not invalidate the previous state. That is, another execution
of the program through the same link may occur. Semantically, the firing of a nonconsuming transition
causes the creation of a new scenario instance. The original instance is still in the original state, while the
new instance is in the state that is the destination state of the fired transition. In contrast, the firing of
a consuming transition makes the source state of a particular attack occurrence invalid. Semantically, the
firing of a consuming transition does not generate a new scenario instance; it simply changes the state of the
original one. Unwinding transitions represent a form of “rollback” and they are used to describe events and

conditions that may invalidate the progress of one or more scenario instances and require the return to an
earlier state. For example, the deletion of a file may invalidate a condition needed for an attack to complete,
and, therefore, a corresponding scenario instance may be brought back to a previous state, such as before
the file was created.

STATL attack descriptions are executed by the language runtime module, called the STAT Core. The
Core implements the concepts of state, transition, instance, timer, etc. In addition, the STAT Core is
responsible for obtaining events from the target environment, and matching this event stream against the
actions and assertions corresponding to transitions in the active attack scenarios.

The STATL language and the Core runtime are domain-independent. They do not support any domain-
specific features that may be necessary to perform intrusion detection analysis in particular domains or
environments. For example, network events such as an IP packet or the opening of a TCP connection are
not represented in STATL natively. Instead, the STAT Framework provides a number of mechanisms to
extend the STATL language and the runtime to match the characteristics of a specific target domain.

The first step in the extension process is to create the events and types that characterize a target domain.
A STAT event is the representation of an element of an event stream to be analyzed. For example, an “IP”
event may be used to represent an IP datagram that has been sent on a link. The event stream is composed
of IP datagrams and other event types, such as Ethernet frames and TCP segments. Basic event types can be
composed into complex tree structures. For example, it is possible to express encapsulation (e.g., Ethernet
frames that encapsulate IP datagrams, which, in turn, contain TCP segments) using a tree of events.

A set of events and types that characterize the entities of a particular domain is called a “Language
Extension”. The name comes from the fact that the events and types defined in a Language Extension
can be used when writing a STATL scenario once they are imported using the “use” STATL keyword. For
example, if the “IP” event and the “IPAddress” type are contained in a Language Extension called “tcpip”.
Then, by using the expression “use tcpip” it is possible to use IP events and TPAddress objects in STATL
attack scenario descriptions.

The events and types defined in a Language Extension must be made available to the runtime. Therefore,
Language Extensions are compiled into dynamically linked libraries (i.e., a “.so” file in a UNIX system or a
DLL file in a Windows system). The Language Extension libraries are then loaded into the runtime whenever
they are needed by a scenario.

Attack scenarios are written in STATL, extended with the relevant Language Extensions. For example,
a signature for a port scanning attack can be expressed in STATL extended with the “tcpip” Language
Extension. Then, STATL attack scenarios are automatically translated into C++ and compiled into dynam-
ically linked libraries, called “Scenario Plugins”. When loaded into the runtime, Scenario Plugins analyze
the incoming event stream looking for events or sequences of events that match the attack description.

Once Language Extensions and Scenario Plugins are loaded into the Core it is necessary to start collecting
events from the environment and passing them to the STAT Core for processing. The input event stream is
provided by one or more “Event Providers”. An Event Provider collects events from the external environment
(e.g., by obtaining packets from the network driver), creates STAT events as defined in one or more Language
Extensions, and inserts these events into the event queue of the STAT Core.

A STAT Core runtime equipped with Language Extensions, Scenario Plugins, and Event Providers repre-
sents a functional intrusion detection system. However, the STAT Framework also provides support for the
definition of “Response Modules”. A Response Module is a library of actions that may be associated with
the evolution of a scenario. For example, a network-based response action could reset a TCP connection, or
it could send an email to the Network Security Officer. Response Modules are compiled into dynamically
linked libraries that can be loaded into the runtime at any moment. Functions defined in a Response Module
can be associated with any of the states defined in a Scenario Plugin that has been loaded in the runtime.
This mechanism provides the ability to associate different types of response functions with the intermediate
steps of an intrusion.

STAT-based sensors can operate as stand-alone IDSs or they can be integrated in a control and com-
munication infrastructure, called MetaSTAT. The MetaSTAT infrastructure has a number of different com-

ponents. First of all, the CommSTAT library allows components in the infrastructure to exchange alert
messages and control directives in a secure way. CommSTAT messages are exchanged of SSL-protected TCP
connections and follow the standard Intrusion Detection Message Exchange Format (IDMEF). The original
IDMEF definition has been extended to include STAT-related control messages that are used to control and
update the configuration of STAT-sensors. For example, messages to transfer STAT modules (e.g., Language
Extensions) across the infrastructure, as well as messages to load modules into sensors have been defined.

STAT-based sensors participation in the MetaSTAT infrastructure is mediated by a component, called
the STAT Proxy, that is responsible for managing a set of sensors for a specific host. The STAT Proxy is
responsible for the installation and uninstallation of modules, and for the routing of messages and control
directives to and from the connected sensors. In addition, the STAT Proxy supports the integration of
third-party tools that are not based on the STAT Framework.

STAT Proxies are connected to one or more Controllers, which are management applications. A Controller
is used by the MetaSTAT administrator to perform activation and reconfiguration of STAT-sensors, and to
collect sensor alerts.

The alerts collected by a Controller are passed to a Collector component that is responsible for storing
the alerts in a persistent way. The IDMEF alerts are stored in a MySQL relational database. The content
of the database can be displayed and queried using the Alert Viewer, which provides a user-friendly graphic
interface.

Controllers can be composed hierarchically to achieve cross-domain control and monitoring.

In summary, the STAT Framework supports the development of intrusion detection systems for different,
heterogeneous domains and environment and the MetaSTAT infrastructure provides the means to control
the sensors deployed in large-scale networks, collecting the results of their analysis in a central repository.

3 Accomplishments

The STAT Framework has been completed. In particular, the STATL language has been designed and a
STATL-to-C++ translator has been developed. In addition, the STAT Core has been implemented. The
STAT Core fully support the dynamic loading of modules and the run-time reconfiguration of sensors.

A number of sensors have been developed using the framework.

e NetSTAT is a network-based intrusion detection system, that uses the traffic sniffed on a local network
as input.

e USTAT is a host-based intrusion detection system, that uses the audit records produced by Sun
Microsystems’ Solaris Basic Security Module (BSM) Packages as input.

e LinSTAT is a host-based intrusion detection system, that uses an event stream provided by a modified
version of the SNARE kernel auditing module as input.

e WinSTAT is a host-based intrusion detection system, that uses Windows NT event logs as input.
e logSTAT is a host-based intrusion detection system, that uses UNIX syslog events as input.
e webSTAT is a host-based intrusion detection system, that uses web server application logs as input.

e AlertSTAT is an intrusion detection system that uses IDMEF alerts as input and performs alert
fusion, aggregation, and correlation.

The development of each sensor required the design and implementation of one or more Language Ex-
tensions to represent the event stream being analyzed, the development of one or more Event Providers that
collect the events from the operational environment, and a number of Scenario Plugins that model different

attacks. The STATL language and the Core runtime are shared by all the sensors, resulting in a simplified
design, reduced development time, and code reuse.

The byproduct of the development of these sensors is a database of attacks that include vulnerable
software, exploits, attack traces, and detection signatures. The software for the STAT Framework and all
the tools is available at the project web site (http://www.cs.ucsb.edu/~rsg/STAT).

The MetaSTAT infrastructure has been completed. The CommSTAT communication library has been
developed in both C and Java to allow for the integration of application developed in different languages. The
Controller has been developed in a text based form and in a Web-based graphic version. The Collector has
also been developed and a schema for efficient storing of IDMEF alerts has been developed. The Collector
uses a generalized DTD-to-SQL schema translation process that allows for the automatic generation of the
SQL schema from the IDMEF DTD. This feature is important because the IDMEF format is currently
going through the standardization process and a generative approach accommodates for changes in the
format without impacting the interface of the analysis tools. The Alert Viewer has also been developed and
optimized for performance. The software for the MetaSTAT infrastructure is available at the project web
site (http://www.cs.ucsb.edu/~rsg/STAT).

3.1 Papers Published

This research produced a number of publications in International Journals, Conference, and Workshops. A
list of the publications related to this project follows.

R.A. Kemmerer, “NSTAT: A Model-based Real-time Network Intrusion Detection System,” Computer
Science Dep., University of California Santa Barbara, Technical Report TRCS97-18, November 1997.

G. Vigna and R.A. Kemmerer, “NetSTAT: A Network-based Intrusion Detection Approach,” in Proceed-
ings of the 14th Annual Computer Security Application Conference, Scottsdale, Arizona, December 1998
(This paper won the Outstanding Paper Award.)

G. Vigna and R.A. Kemmerer, “NetSTAT: A Network-based Intrusion Detection System,” Journal of
Computer Security, 7(1), IOS Press, 1999.

G. Vigna, S.T. Eckmann, and R.A. Kemmerer, “The STAT Tool Suite,” in Proceedings of DISCEX 2000,
Hilton Head, South Carolina, January 2000, IEEE Press.

G. Vigna, S.T. Eckmann, and R.A. Kemmerer, “Attack Languages,” in Proceedings of the IEEE Infor-
mation Survivability Workshop, Boston, MA, October 2000.

S.T. Eckmann, G. Vigna, and R.A. Kemmerer, “STATL: An Attack Language for State-based Intrusion
Detection,” in Proceedings of the ACM Workshop on Intrusion Detection, Athens, Greece, November 2000.

S.T. Eckmann, G. Vigna, and R.A. Kemmerer, “STATL Syntax and Semantics,” Computer Science Dep.,
University of California Santa Barbara, Technical Report TRCS20-19, December 2000.

G. Vigna, R.A. Kemmerer, and P. Blix, “Designing a Web of Highly-Configurable Intrusion Detection
Sensors,” in Proceedings of the Workshop on Recent Advances in Intrusion Detection (RAID 2001), Davis,
CA, October 2001.

S.T. Eckmann, “Translating Snort rules to STATL scenarios”, presented at the 4th International Sym-
posium on Recent Advances in Intrusion Detection (RAID 2001), Davis, CA, October 2001, LNCS 2212, pp.
69-84.

S.T. Eckmann, G. Vigna, and R.A. Kemmerer, “STATL: An Attack Language for State-based Intrusion
Detection,” Journal of Computer Security, vol. 10, no. 1/2, pp. 71-104, 2002.

R.A. Kemmerer and G. Vigna, “Intrusion Detection”, in IEEE Computer, Special Issue on Security and
Privacy, April 2002.

C. Kruegel, F. Valeur, G. Vigna, and R.A. Kemmerer, “Stateful Intrusion Detection for High-Speed
Networks,” IEEE Symposium on Security and Privacy, Oakland, CA, May 2002.

G. Vigna, B. Cassell, and D. Fayram, “An Intrusion Detection System for Aglets”, in Proceedings of the
International Conference on Mobile Agents (MA ’02), Barcelona, Spain, October 2002.

G. Vigna, F. Valeur, J. Zhou, and R.A. Kemmerer, “Composable Tools For Network Discovery and
Security Analysis,” Proceedings of the Eighteenth Annual Computer Security Applications Conference (AC-
SAC’02), Las Vegas, Nevada, pp. 14-24, December 2002.

3.2 Students Graduated
The following PhD students were supported by this research:
e Paul Kolano 1999, currently at NASA /Ames
e Zhe Dang 2000, currently at Washington State University
e Andre dos Santos 2000, currently at Georgia Tech
e Steven Eckmann 2002, independent consultant

Numerous Masters degree students were also supported by this research.

4 Technology Transition

The STAT toolset has been used in a number of technology transfer efforts. Participating in these efforts
provided feedback on the effectiveness of the STAT approach. In addition, limitations that were discovered
when the systems were deployed in a real-life setting were addressed to improve the overall performance of
the system.

A first form technology transfer is the participation to a number of DARPA-sponsored intrusion detection
evaluation efforts.

In 1998 we participated in the off-line intrusion detection evaluation organized by Lincoln Labs/MIT.
NetSTAT and USTAT were run against network dumps and BSM files, respectively. The results were then
delivered to LL for evaluation. The STAT tools performed at the highest level in the evaluation. The
lessons learned by participating in this effort were the motivation factor for re-designing the STAT sensors
as extensions of a common framework.

The attack database built for testing NetSTAT and USTAT was given to the Air Force Research Labo-
ratory (AFRL) for use in their 1998 real-time evaluation. In addition to taking part in the evaluation, we
gave support in fixing problem with the AFRL testbed network setup.

The code for the USTAT preprocessor was also delivered to the “Fraud and Intrusion Detection for
Financial Information Systems using Meta-Learning Agents” project at Columbia University. They used the
preprocessor as part of their preparation for the DARPA off-line evaluation.

In 1999, USTAT, NetSTAT, and WinSTAT were used to participate in the 1999 LL/MIT IDS evaluation.
These tools were a complete re-implementation of the original tools based on the STAT Framework. Again,
the STAT toolset performed at the highest levels.

As a byproduct of our participation in the effort, we helped the MIT /Lincoln Laboratory group with the
debugging of their training data.

USTAT and NetSTAT were also delivered to the AFRL for use in their 1999 real-time evaluations.

Transfer of ideas and technologies were also performed by participating in the DARPA Attack Language
subgroup. A paper on STATL was distributed to the subgroup and a paper on attack languages was
published.

Throughout the project’s lifetime we collaborated with SRI’s Emerald (project “Analysis and Response
for Intrusion Detection in Large Networks”) to determine how to approach the integration of USTAT, NSTAT,
and NetSTAT in SRI’'s EMERALD environment to demonstrate interoperability.

The code for USTAT, NetSTAT, and WinSTAT was delivered to the TIC for installation in their testbed
network. In addition, the code was delivered to Dan Schnackenberg at Boeing to be integrated into the
JICPAC exercises.

In 2002, we participated in the validation experiment of the CyberPanel program. We provided the
USTAT and WinSTAT sensors for inclusion in the testbed network and we closely collaborated with the
exercise organizers to match their requirements in terms of tool configuration, scenarios, and type and
format of response.

In addition, we developed the AlertSTAT correlator to demonstrate the applicability of the STAT analysis
technique to alert fusion and correlation. Even though the tool was developed in a very short time frame,
AlertSTAT outperformed (in terms of the effectiveness/accuracy ratio) correlator tools that were developed
in longer time and with greater development effort.

The lessons learned by participating in the correlation effort were also applied to the analysis of the data
collected by the AFRL’s AFED tool. A new tool, called AFEDSTAT, was developed to match the AFED
event model and to fulfill AFRL’s analysis requirements.

Finally, as a form of technology transition, the code in source and binary form is available at the project’s
web site (http://www.cs.ucsb.edu/~rsg/STAT), together with detailed documentation.

